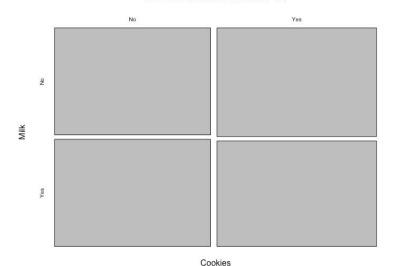


Cookies & -Milk-...Soda?

Matthew Lau
Professor Imielinski
March 28, 2017
Data 101 WALMART Assignment

You might think Cookies and Milk are bought together...



You would be wrong.

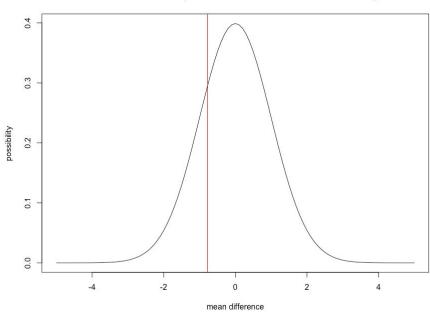
There are no specific associations between Walmart customers buying milk and cookies together.

Cookies and Milk Mosaic Plot

Permutation Test (5x):

```
> PermutationTestSecond::Permutation(WALMART, "COOKIES","MILK", 1000, 1,0)
[1] 0.214
> PermutationTestSecond::Permutation(WALMART, "COOKIES","MILK", 1000, 1,0)
[1] 0.226
> PermutationTestSecond::Permutation(WALMART, "COOKIES","MILK", 1000, 1,0)
[1] 0.218
> PermutationTestSecond::Permutation(WALMART, "COOKIES","MILK", 1000, 1,0)
[1] 0.219
> PermutationTestSecond::Permutation(WALMART, "COOKIES","MILK", 1000, 1,0)
[1] 0.199
```

Result P-value > .05


Z-TEST: Milk and Cookies

I decided to perform a Z-TEST on this as well.

R Code:

```
> YES.Cookies <- subset(WALMART, WALMART$COOKIES == 1)
> NO.Cookies <- subset(WALMART, WALMART$COOKIES == 0)
> YES.Cookies.Milk <- YES.Cookies$MILK
> NO.Cookies.Milk <- NO.Cookies$MILK
> sd.YES.Cookies.Milk <- sd(YES.Cookies.Milk)
> sd.NO.Cookies.Milk <- sd(NO.Cookies.Milk)
> mean.YES.Cookies.Milk <- mean(YES.Cookies.Milk)
> mean.NO.Cookies.Milk <- mean(NO.Cookies.Milk)
> len_YES.Cookies.Milk <- length(YES.Cookies.Milk)
> len_NO.Cookies.Milk <- length(NO.Cookies.Milk)
> sd.YES.NO.Cookies.Milk <- sqrt(sd.YES.Cookies.Milk^2/len_YES.Cookies.Milk + sd.NO.Cookies
.Milk^2/len_NO.Cookies.Milk)
> zeta <- (mean.YES.Cookies.Milk - mean.NO.Cookies.Milk)/sd.YES.NO.Cookies.Milk
T17 -0.7729675
> p = pnorm(zeta)
[1] 0.2197708
```

MILK PURCHASED (PURCHASED COOKIES vs. NO COOKIES)

Result
P-value = 0.21 > .05 NO correlation

TEA

Permutation Tests (x5):

COFFEE

```
> PermutationTestSecond::Permutation(WALMART, "COOKIES","TEA", 1000, 1,0)
[1] 0.125
> PermutationTestSecond::Permutation(WALMART, "COOKIES","TEA", 1000, 1,0)
[1] 0.119
> PermutationTestSecond::Permutation(WALMART, "COOKIES","TEA", 1000, 1,0)
[1] 0.128
> PermutationTestSecond::Permutation(WALMART, "COOKIES","TEA", 1000, 1,0)
[1] 0.107
> PermutationTestSecond::Permutation(WALMART, "COOKIES","TEA", 1000, 1,0)
[1] 0.14
> |
```

```
> PermutationTestSecond::Permutation(WALMART, "COOKIES","COFFEE", 1000, 1,0)
[1] 0.3
> PermutationTestSecond::Permutation(WALMART, "COOKIES","COFFEE", 1000, 1,0)
[1] 0.317
> PermutationTestSecond::Permutation(WALMART, "COOKIES","COFFEE", 1000, 1,0)
[1] 0.328
> PermutationTestSecond::Permutation(WALMART, "COOKIES","COFFEE", 1000, 1,0)
[1] 0.319
> PermutationTestSecond::Permutation(WALMART, "COOKIES","COFFEE", 1000, 1,0)
[1] 0.33
> |
```

Result P-value > .05 Result P-value > .05

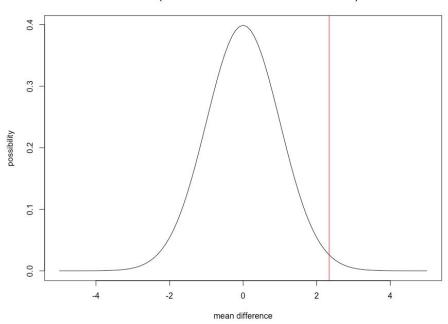
Neither tea nor coffee show correlations either.

SODA AND COOKIES

Permutation Test (x5)

R Code

```
> PermutationTestSecond::Permutation(WALMART, "COOKIES","SODA", 1000, 1,0)
[1] 0.011
> PermutationTestSecond::Permutation(WALMART, "COOKIES","SODA", 1000, 1,0)
[1] 0.015
> PermutationTestSecond::Permutation(WALMART, "COOKIES","SODA", 1000, 1,0)
[1] 0.01
> PermutationTestSecond::Permutation(WALMART, "COOKIES","SODA", 1000, 1,0)
[1] 0.013
> PermutationTestSecond::Permutation(WALMART, "COOKIES","SODA", 1000, 1,0)
[1] 0.007
>
```


Result
P-value > .05
(shows association)

Z-TEST: Soda and Cookies

SODA (PURCHASED COOKIES vs. NO COOKIES)


```
> YES.Cookies <- subset(WALMART, WALMART$COOKIES == 1)
> NO.Cookies <- subset(WALMART, WALMART$COOKIES == 0)
> YES.Cookies.Soda <- YES.Cookies$SODA
> NO.Cookies.Soda <- NO.Cookies$SODA
> sd.YES.Cookies.Soda <- sd(YES.Cookies.Soda)
> sd.NO.Cookies.Soda <- sd(NO.Cookies.Soda)
> mean.YES.Cookies.Soda <- mean(YES.Cookies.Soda)
> mean.NO.Cookies.Soda <- mean(NO.Cookies.Soda)
> len_YES.Cookies.Soda <- length(YES.Cookies.Soda)
> len_NO.Cookies.Soda <- length(NO.Cookies.Soda)
> sd.YES.NO.Cookies.Soda <- sqrt(sd.YES.Cookies.Soda^2/len_YES.Cookies.Soda + sd.NO.Cookies
.Soda^2/len_NO.Cookies.Soda)
> zeta <- (mean.YES.Cookies.Soda - mean.NO.Cookies.Soda)/sd.YES.NO.Cookies.Soda
> zeta
T17 2.340048
> p = 1 - pnorm(zeta)
[1] 0.009640636
```

<u>Result</u> P-value = 0.009 (shows association)

Another Finding: Coffee and Sugar Association

Permutation Test (x5):

```
Z-TEST
```

```
> PermutationTestSecond::Permutation(dat, "COFFEE", "SUGAR", 1000, 1,0)
[1] 0.006
> PermutationTestSecond::Permutation(dat, "COFFEE", "SUGAR", 1000, 1,0)
[1] 0.007
> PermutationTestSecond::Permutation(dat, "COFFEE", "SUGAR", 1000, 1,0)
[1] 0.008
> PermutationTestSecond::Permutation(dat, "COFFEE", "SUGAR", 1000, 1,0)
[1] 0.008
> PermutationTestSecond::Permutation(dat, "COFFEE", "SUGAR", 1000, 1,0)
[1] 0.007
```

Result
P-value ~ 0.008
(shows association)

```
> YES.Coffee.Sugar <- YES.Coffee$SUGAR
> NO.Coffee.Sugar <- NO.Coffee$SUGAR
> sd.YES.Coffee.Sugar <- sd(YES.Coffee.Sugar)
> sd.NO.Coffee.Sugar <- sd(NO.Coffee.Sugar)
> mean.YES.Coffee.Sugar <- mean(YES.Coffee.Sugar)
> mean.NO.Coffee.Sugar <- mean(NO.Coffee.Sugar)
> len_YES.Coffee.Sugar <- length(YES.Coffee.Sugar)
> len NO.Coffee.Sugar <- length(NO.Coffee.Sugar)
> sd.YES.NO.Coffee.Sugar <- sqrt(sd.YES.Coffee.Sugar^2/len YES.Coffee.
Sugar + sd.NO.Coffee.Sugar^2/len NO.Coffee.Sugar)
> zeta <- (mean.YES.Coffee.Sugar - mean.NO.Coffee.Sugar)/sd.YES.NO.Coffee.
Sugar
> zeta
[1] -2.397572
> plot(x=seq(from = -5, to= 5, by=0.1), y=dnorm(seq(from = -5, to= 5, by=0.1))
.1), mean=0), type='l', xlab = 'mean difference', ylab='possibility',
main="SUGAR PURCHASED (PURCHASED COFFEE vs. NO PURCHASED COFFEE)")
> abline(v=zeta, col='red')
> p <- pnorm(zeta)
[1] 0.008252064
```

COOKIES AND SODA

By Matthew Lau